Important Controls For Your Flow Cytometry Lab

No researcher wants to discover that the results of a long, careful experiment are confounded by an uncontrolled variable. To assist in data interpretation, you must build careful controls into your experimental workflow. These controls minimize the effects of confounding variables in the experiment while helping to identify the changes related to the independent variable. When designing a flow cytometry experiment, what controls should you consider? Below are a few experimental controls that can dramatically enhance reproducibility in your flow cytometry experiments.

Compensation

Addressing fluorescence compensation is not possible without proper controls, so it is critical to prepare controls of high quality. Compensation is a consequence of spectral overlap, which occurs because the emission spectra of fluorochromes is broader than the standard filters used to measure the specific (or major) emission.  This leads to the detection of the fluorochrome in secondary channels. 

The more colors measured within a single experiment, the more crowded the spectrum becomes, and this affects the sensitivity of your measurements. Compensation is a mathematical process that deals with this problem by removing a percentage of the total signal from each detector.

This percentage corresponds to the amount of spillover signal that is contributed to any given detector by all the other fluorophores being used in the experiment. The compensation calculation relies on the fundamental concept that the amount of spillover of a fluorophore (e.g. fluorophore A) into a detector (e.g. fluorophore B) is defined by the ratio of A’s signal in B’s detector to A’s signal in its own detector. This relationship between two detectors, called spillover coefficient, defines the spillover regardless of the amount of dye, so it can be used correctly for the spectral overlap in a typical experimental setting in which the amounts of dye can vary widely between and within samples.

Fluorescence Minus One

Experimental samples are meaningless if you can’t easily establish the positive from negative population While this may be easy for some major phenotyping markers, it becomes more complex if you are analyzing rare events or determining the positivity of emergent targets, such as activation markers.

How can you convince reviewers that you didn’t make an error and placed your gate in the proper place? How are you going to account for the data spread that occurs with compensation? In any multicolor flow cytometry experiment, the answer to your gating troubles is to use fluorescence minus one controls. FMO controls are samples that contain all the antibodies you are testing in your experimental samples – minus one of them.

When analyzing the excluded parameter in an FMO control, you give yourself a strong negative control to work with. It’s a strong negative control because the left out marker in the FMO control allows you to take into account how the other stains in your panel affect the left out parameter. FMO controls are required for accurately discriminating positive versus negative signals, high versus low (or variable) antigen expression levels, and more. Even simple 2- or 3-color experiments reveal the need for FMO controls when drawing gates.

Reagent controls – titration and isoclonal.

Reagent control methods include titration and isoclonal controls. In your experiments, it is important to validate the amount of antibody used for staining. If too much antibody is used, there will be an increase in non-specific binding, which reduces sensitivity. Yet too little antibody, and the cells will not be saturated – this too results in reduced sensitivity.

The best way to determine the optimal antibody concentration is to perform a titration experiment. In a titration experiment, you vary the amount of antibody used in staining while holding other variables—incubation time, temperature, and cell concentration—constant. After acquiring the data, calculate the staining index for each concentration. An example of a titration experiment is shown below.

The isoclonal control was originally published to demonstrate that the cells of interest were not binding the fluorochrome on the antibodies, as has been shown for CD64. The isoclonal control is a great way to show that you have specific binding, as shown below.

Gating

Identifying the target cells of an experiment is key to evaluating the biological hypothesis. Populations of cells that do not meet established criteria must be removed. Using the data-reduction method known as “gating,” the researcher acts as a kind of gatekeeper, controlling what can pass based on the controls designed for a specific experiment. There are 3 major controls that qualify as gating methods, described here in summary: First, there is the fluorescence minus one control (FMO). As we already discussed,  this control is designed to identify the effects of spectral overlap of fluorochromes into the channel of interest. 

Second, there are internal negative controls (INC): cells in the staining sample that do not express the marker of interest. Unlike the FMO control, where one reagent is left out, the INC is exposed to all the markers, but biologically, it does not express the marker of interest. The INC can help identify and address proper gating when there is non-specific binding of the antibody. 

The use of the isotype control remains controversial and is not recommended as a gating control. Based on the assumptions that must be made for this control, it should be relied on to determine positivity. 

The third option in gating is the unstimulated control, which is useful for stimulation experiments. This gating method relies on the biology of the system to assist in setting the proper gate. It takes into account the background binding of the target antibody since the unstimulated cells should not be expressing the target. 

In conclusion, to improve reproducibility, you must examine and understand the many controls available to a researcher. Minimize the effects of confounding variables in your experiment by using appropriate control methods to identify changes caused by the independent variable and exercise any confounding variables that may attempt to haunt your experiment.

To learn more about important control measures for your flow cytometry lab, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class

ABOUT TIM BUSHNELL, PHD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Tim Bushnell, PhD

Similar Articles

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

By: Tim Bushnell, PhD

What photon from yonder fluorochrome breaks?  It is … umm… hmmm. Let me see. Excitation off a 561 nm laser, with an emission maximum of 692 nm. I’m sure if Shakespeare was a flow cytometrist, he might have written that very scene. But the play is lost in time. However, since the protagonist had difficulty determining what fluorochrome was emitting photons, let’s consider how this could be figured out. In my opinion, one of the handiest flow cytometry tools is the spectral viewer. This tool helps visualize the excitation and emission profile of different fluorochromes, as well as allowing you…

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

By: Tim Bushnell, PhD

Reproducibility has been an ongoing, and important, concept in the sciences for years.  In the area of biomedical research, the alarm was sounded by several papers published in the early 2010’s.  Authors like Begley and Ellis, Prinz and coworkers, and Vasilevsky and colleagues, among others reported an alarming trend in the reproducibility of pre-clinical data.  These reports indicated between 50% to almost 90% of published pre-clinical data were not reproducible.  This was further highlighted in the article by Freedman and coworkers, who tried to identify and quantify the different sources of error that could be causing this crisis.  Figure 1,…

5 Common Flow Cytometry Questions, Answered

5 Common Flow Cytometry Questions, Answered

By: Tim Bushnell, PhD

I want to thank all of you who send us your questions about flow cytometry, so I thought I would dip into the old email bag and answer a few of the common ones here.  If your question isn’t answered this time, look for it to be answered in a future blog post.  Of course, if you want us to cover a specific topic, drop us a line.  1. How Fast Can I Go? This is  a common question. The allure of the ‘hi’ button is hard to resist.  The faster you go, the sooner you are finished with data…

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

By: Tim Bushnell, PhD

My first introduction to flow cytometry was talking to a professor who’d brought one on a research cruise to study phytoplankton. It was only later that I was introduced to the marvelous world that’s been my career for over 20 years.   In that time, I’ve had the opportunity to work with researchers in many different areas, exposing me to a wide variety of cell types and more important assays. What continues to amaze me is the number of different parameters we can measure, not just the number of fluorochromes, but the information we can extract from samples – animal, vegetable…

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

Top Industry Career eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.