Mass Cytometry Revolves Around These 5 Things

Today’s article will summarize the functionality of mass cytometry technology. This tech has been commercialized largely by Fluidigm in the CyTof systems. There are 5 key points to cover, or takeaways, that cytometrists should keep in mind as they perform their research.

1. How it mass cytometry works
2. Panel design
3. Sample preparation
4. Data analysis
5. Imaging mass cytometry

How Does Mass Cytometry Work?

Traditional fluorescent flow cytometry has started to push the limit of the number of simultaneous parameters that can be measured. With the recent advent of spectral cytometry, as many as 40 simultaneous fluorescence parameters can be measured.

The first foray into high-dimensional cytometry didn’t use fluorescence. Rather, the antibodies were labeled with metal ions. To measure these labels, the cells had to be vaporized and the ion masses measured using a different detector. Thus cytometry time-of-flight, or CyTOF, more commonly known as Mass Cytometry, was born.

The mass cytometry process cycle

Figure 1: The CyTOF process, from Bendall et al. (2012).

The mass cytometry process is shown in figure 1. Cells are labeled following standard procedures, and are introduced into the system by the formation of mist droplets (nebulizer), these droplets pass through the ICP – an induced coupled plasma that vaporizes the cells, leaving the ion cloud. This cloud passes through a quadrupole that is designed to filter out the common/abundant ions leaving the heavy metal ions that were coupled to the antibodies. These are passed into the Time-of-Flight chamber where the mass and quantity of these masses is captured. Thee values are converted into typical FCS data for analysis.

Designing the Panel

A lot has been made about the fact that in mass cytometry there is no ‘compensation’ required. This is because there is no equivalent to autofluorescence of cells in the mass cytometry world. On the other hand, there are several factors including the purity of the metal ion, the oxidation of some metals and the sensitivity of the detector that need to be considered during panel design Figure 2 shows the differential sensitivity of the detector based on mass and figure 3 shows the predicted issues with oxidation and purity.

CyTOF differential sensitivity based on mass

Figure 2: Differential sensitivity of the CyTOF based on mass.

Oxidation and purity issues of different metals in mass cytometry operation

Figure 3: The potential oxidation and purity issues of different metals contributing and receiving error from other metals.

It should be noted that if a patient that a sample is derived from has been exposed to barium (used in some imaging tests), this can impact the instrument sensitivity. Likewise cisplatin, a common chemotherapeutic can also reduce instrument sensitivity. In fact, cisplatin has become a useful viability indicator for mass cytometry experiments.

There is a useful panel design tool that helps take these factors into account. After adding the target populations, you can run an optimized metals and a table, such as shown in figure 4 is generated, making the best recommendations for the proposed panel, taking into account the factors mentioned above.

Output from the CyTOF mass cytometry panel design tool

Figure 4: Output from the CyTOF panel design tool.

Preparing the Sample

Sample preparation, although similar to traditional fluorescent flow, requires that the sample be extremely clean. Unlike fluorescence, where the emitted photons are measured by the detector, in mass spectrometry, all the ions that make it into the TOF will interact with the detector, leading to signal, this is shown in Figure 5. Additionally, with the cells being vaporized the size and complexity parameters that are typically used in fluorescent flow are lost.

Poorly washed CyTOF sample and the negative impact on mass cytometry experiments

Figure 5: The impact of a poorly washed CyTOF sample, showing that the excess contaminates impact the signal. Data from Fluidigm (formerly DVS sciences)

There are some very specific considerations that need to be taken into account since the samples also are finally resuspended in water, rather than a protein containing buffer. Care must be taken when pelleting cells, so make sure to mark where the pellet should be located to reduce the chance of losing the pellet. Second, before running on the instrument, cells are stained with DNA intercalator IR191/IR193 which is used to help identify the target cells

Cell concentration is also important, so that there is clean separation between the ion clouds from each cell, the system should be run at no more than approximately 1,000 events per second. Practically, less than this maximum is better, to take into account uneven delivery of the sample through the nebulizer. If the cells are run to fast, this will lead to cloud fusion, and the resulting data will be suspect. Figure 6 shows this effect.

Here is what happens when cells are running too fast during mass cytometry operation

Figure 6: impact on the data of running cells to fast. The bottom left panel shows the output of the ‘raindrop plot’ when cells are run close together. For comparison, on the bottom right panel, is an example of good cell concentration, with a single cell highlighted in the red box.

Barcoding is a powerful tool for mass cytometry assays. In this process, each individual sample is labeled with a combination of one or more barcoding metal tags, giving each sample a unique signature. The samples are mixed together and antibody staining continues. This ensures all the samples are stained equivalently, reducing the effect of staining individual tubes can have on signal variation, as well as reducing the total amount of antibody needed. This was discussed in this article by Zunder et al (2015), and shown in Figure 7 from that paper.

CyTOF barcoding

Figure 7: Barcoding for CyTOF samples.

Finally, CyTOF data lends itself to normalization between runs. This is accomplished using a collection of beads with known intensity of five metals. From those signals, using software the cell data can be corrected. This is described in this paper by Finck et al (2013), and an example of data from figure 2 of that paper is shown below (Fig. 8)

CyTOF data normalization with beads

Figure 8: Normalization of CyTOF data using beads. From Finck et al (2013).

Data Analysis

Data analysis of high-dimensional data continues to evolve. While traditional bivariate gating can be performed, automated tools for visualization, clustering and comparing are being developed. These packages can be found as freeware as R scripts, and are getting implemented into commercially available software. The power of each of these tools is such that they require separate articles, so stay tuned to the Expert Cytometry blog for more information. Data analysis from a clustering program (SPADE) and data reduction (tSNE) analysis are shown in figure 9.

CyTOF data clustering

Figure 9: Data analysis of CyTOF data via clustering (left panel) and data reduction (right panel)

Researchers are developing pipelines such that data will effectively go in one end and undergo a normalization, a data reduction, a dimensionality reduction, and a gating partition – all of this automatically. This technology has the potential to profoundly facilitate the analysis process.

Imaging Mass Cytometry

CyTOF analysis has been expanded into imaging mass cytometry. In this process, shown in figure 10, a tissue section is labeled with metal-tagged antibodies, the tissue is interrogated with a laser to ionize a part of the sample. The vaporized tissue is carried away and enters the mass cytometer. This process is shown in figure 10, from the paper by Chang and colleagues (2017).

Mass cytometry imaging process

Figure 10: Imaging Mass Cytometry process.

This methodology provides expression level data in a location specific manner, allowing for better understanding and interrogation of complex microenvironments. While an emerging technology, it is rapidly becoming more popular. There are over 20 publications using this technology, including this one from Carvajal-Hausdorf and coworkers (2019), where the authors used an 18-plex analysis of breast cancer patient samples to examine cytotoxic T-cell infiltration after treatment (example data in figure 11).

Tissue mass cytometry results

Figure 11: Results of tissue mass cytometry: From Carvajal-Hausdorf and coworkers (2019)

In conclusion, mass cytometry is a powerful and expanding tool for the complex analysis of both suspension cells and tissues. The ability to measure over 30 targets at the same time allows researchers to probe biological processes in a deep and meaningful way, making cells understandable from an exciting whole-cell angle. The 5 core features of cytometry research include panel design, sample preparation, data analysis, and imaging mass cytometry. It’s always a good idea–for veterans and neophytes alike–to review the core principles of cytometry technology’s functionality.

To learn more about how Mass Cytometry Revolves Around These 5 Things, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class

ABOUT TIM BUSHNELL, PHD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Tim Bushnell, PhD

Similar Articles

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

The Power Of Spectral Viewers And Their Use In Full Spectrum Flow Cytometry

By: Tim Bushnell, PhD

What photon from yonder fluorochrome breaks?  It is … umm… hmmm. Let me see. Excitation off a 561 nm laser, with an emission maximum of 692 nm. I’m sure if Shakespeare was a flow cytometrist, he might have written that very scene. But the play is lost in time. However, since the protagonist had difficulty determining what fluorochrome was emitting photons, let’s consider how this could be figured out. In my opinion, one of the handiest flow cytometry tools is the spectral viewer. This tool helps visualize the excitation and emission profile of different fluorochromes, as well as allowing you…

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

Fickle Markers: Solutions For Antibody Binding Specificity Challenges

By: Tim Bushnell, PhD

Reproducibility has been an ongoing, and important, concept in the sciences for years.  In the area of biomedical research, the alarm was sounded by several papers published in the early 2010’s.  Authors like Begley and Ellis, Prinz and coworkers, and Vasilevsky and colleagues, among others reported an alarming trend in the reproducibility of pre-clinical data.  These reports indicated between 50% to almost 90% of published pre-clinical data were not reproducible.  This was further highlighted in the article by Freedman and coworkers, who tried to identify and quantify the different sources of error that could be causing this crisis.  Figure 1,…

5 Common Flow Cytometry Questions, Answered

5 Common Flow Cytometry Questions, Answered

By: Tim Bushnell, PhD

I want to thank all of you who send us your questions about flow cytometry, so I thought I would dip into the old email bag and answer a few of the common ones here.  If your question isn’t answered this time, look for it to be answered in a future blog post.  Of course, if you want us to cover a specific topic, drop us a line.  1. How Fast Can I Go? This is  a common question. The allure of the ‘hi’ button is hard to resist.  The faster you go, the sooner you are finished with data…

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

Combining Flow Cytometry With Plant Science, Microorganisms, And The Environment

By: Tim Bushnell, PhD

My first introduction to flow cytometry was talking to a professor who’d brought one on a research cruise to study phytoplankton. It was only later that I was introduced to the marvelous world that’s been my career for over 20 years.   In that time, I’ve had the opportunity to work with researchers in many different areas, exposing me to a wide variety of cell types and more important assays. What continues to amaze me is the number of different parameters we can measure, not just the number of fluorochromes, but the information we can extract from samples – animal, vegetable…

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

3 Must-Have High-Dimensional Flow Cytometry Controls

3 Must-Have High-Dimensional Flow Cytometry Controls

By: Tim Bushnell, PhD

Developments such as the recent upgrade to the Cytobank analysis platform and the creation of new packages such as Immunocluster are reducing the computational expertise needed to work with high-dimensional flow cytometry datasets. Whether you are a researcher in academia, industry, or government, you may want to take advantage of the reduced barrier to entry to apply high-dimensional flow cytometry in your work. However, you’ll need the right experimental design to access the new transformative insights available through these approaches and avoid wasting the considerable time and money required for performing them. As with all experiments, a good design begins…

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

The Fluorochrome Less Excited: How To Build A Flow Cytometry Antibody Panel

By: Tim Bushnell, PhD

Fluorochrome, antibodies and detectors are important. The journey of a thousand cells starts with a good fluorescent panel. The polychromatic panel is the combination of antibodies and fluorochromes. These will be used during the experiment to answer the biological question of interest. When you only need a few targets, the creation of the panel is relatively straightforward. It’s only when you start to get into more complex panels with multiple fluorochromes that overlap in excitation and emission gets more interesting.  FLUOROCHROMES Both full spectrum and traditional fluorescent flow cytometry rely on measuring the emission of the fluorochromes that are attached…

Flow Cytometry Year in Review: Key Changes To Know

Flow Cytometry Year in Review: Key Changes To Know

By: Meerambika Mishra

Here we are, at the end of an eventful year 2021. But with the promise of a new year 2022 to come. It has been a long year, filled with ups and downs. It is always good to reflect on the past year as we move to the future.  In Memoriam Sir Isaac Newton wrote “If I have seen further, it is by standing upon the shoulders of giants.” In the past year, we have lost some giants of our field including Zbigniew Darzynkiwicz, who contributed much in the areas of cell cycle analysis and apoptosis. Howard Shapiro, known for…

What Star Trek Taught Me About Flow Cytometry

What Star Trek Taught Me About Flow Cytometry

By: Tim Bushnell, PhD

It is no secret that I am a very big fan of the Star Trek franchise. There are many good episodes and lessons explored in the 813+ episodes, 12 movies (and counting). Don’t worry, this blog is not going to review all 813, or even 5 of them. Instead, some of the lessons I have taken away from the show that have applicability to science and flow cytometry.  “Darmok and Jalad at Tanagra.”  (ST:TNG season 5, episode 2) This is probably one of my favorite episodes, which involves Picard and an alien trying to establish a common ground and learn…

Top Industry Career eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.