How To Do Phospho-Flow Cytometry

I often have researchers come into the core wanting to look at the activation and downstream signaling events that occur in different immune cells.

These events occur in response to signals such as cytokines, chemokines, various receptor ligands, and the engagement of the T cell or B cell receptors. The signaling events are also characterized by the initiation of several phosphorylation events.

Measuring Phosphorylation Events

When this is the case, I recommend that the researchers set up a phospho-specific flow cytometry, or phospho-flow, experiment. These types of experiments measure the phosphorylation state of intracellular proteins at the single cell level.

Phospho-flow allows for the analysis of many phosphorylation events, along with cell surface markers, simultaneously. These types of experiments enable the experimenter to resolve complex biochemical signaling networks in heterogeneous cell populations. Phospho-flow has been applied to numerous areas of biology, including antigenic stimulation and microbial challenge, high-throughput and high-content drug discovery, as well as the characterization of signaling pathways in both normal and disease-altered immune responses.

Fixing Your Cells For Phospho-Flow

In phospho-flow, immune cells or other cell populations are stimulated with signaling receptor ligands or antagonists for a certain period of time. Following stimulation, the cells are fixed using paraformaldehyde-based buffers. The fixation process locks the cells in their induced states of phosphorylation so they can be permeabilized and stained with fluorescently-labeled antibodies against the phosphorylated proteins.

The cells can also be stained with antibodies against cell surface markers and other proteins of interest at the same time. The final step is to analyzed the stained populations with a flow cytometer or cell sorter.

5 Phospho-Flow Tips

When performing and optimizing a phosphor-flow experiment, there are several things to consider.  Here are 5 ways to optimize your phospho-flow experiment.

1. Run all of your samples at the same time. 

When analyzing phoso-flow data, there are two things to keep in mind. First, the fluorescence intensities of each population will serve as a measure of the magnitude of the protein target’s phosphorylation levels. Second, the staining intensities will allow you to calculate the percentage of cells able to respond to a given signal.

The problem is that very often you will need to stimulate different cell populations on different days and at different times. This will create variability between staining intensities.

The best way to limit this variability is to use a buffer that allows you to freeze your all of your populations before adding antibody. Then, an hour or two before you’re ready to run your samples on a flow cytometer, thaw all of your samples at once. Then simply stain them and run them as one large batch.

2. Select the right permeabilization method.

Many protocols use 100% methanol for permeabilization following fixation. The advantage of this is that following methanol permeabilization, the cells can be stored for an extended period of time at -20°C to -80°C prior to staining.

This means you can stimulate different samples on different days and then run them altogether in one big batch to get more accurate results. All you have to do is keep freezing your cells after every stimulation.

3. Select the right target antigens.

Not all protein targets are created equal. Some antigens will not survive the permeabilization process, even if you’re using methanol. The best way to determine which antigens you should use is to review the literature and see which proteins remain stable during permeabilization.

You can also use online resources such as Fluorish and Cytobank to identify potential protein targets on your cell populations on interest.

4. Make sure you’re targeting the right event.

To measure phosphorylation events uniquely, you have to use antibodies that are specific to the phosphorylated form of a protein. These antibodies are usually raised using short phosphorylated peptide immunogens that are coupled to carrier proteins.

However, sometimes you’ll want to use several antibodies against the same phosphorylated protein. The key is that each antibody will target a different phospho-residue within the protein. The advantage of this is that you can gain insight into which residues are important for particular signaling events.

5. Make sure you’re ONLY targeting the right event. 

Once you’ve ensured that your antibody is targeting the right phospho-residue, you’ll want to confirm that your antibody is ONLY targeting that residue. In other words, you’ll want to confirm phosphor-specificity. There are several ways to confirm this.

First, you can compare the staining intensities of resting versus stimulated cell populations. Second, you can treat your samples with phosphatases prior to flow analysis. Third, you can compare phosphorylated peptides to non-phosphorylated peptides. Fourth and finally, you can compare phospho-protein levels to total protein content.

Additional References
Krutzik et al. Journal of Immunology, 2005, 175:2357-2365
https://www.bdbiosciences.com/en-us/applications/research-applications/intracellular-flow
http://www.cytobank.org/nolanlab/experiment_protocols/

If you’re serious about flow cytometry and want to be a part of Expert Cytometry, click here to learn more.

Join Expert Cytometry's Mastery Class

ABOUT TIM BUSHNELL, PHD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Tim Bushnell, PhD

Similar Articles

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

By: Deepak Kumar, PhD

NGS methodologies have been used to produce high-throughput sequence data. These data with appropriate computational analyses facilitate variant identification and prove to be extremely valuable in pharmaceutical industries and clinical practice for developing drug molecules inhibiting disease progression. Thus, by providing a comprehensive profile of an individual’s variome — particularly that of clinical relevance consisting of pathogenic variants — NGS helps in determining new disease genes. The information thus obtained on genetic variations and the target disease genes can be used by the Pharma companies to develop drugs impeding these variants and their disease-causing effect. However simple this may allude…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Top Industry Career eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.