How To Use Flow Cytometry To Correctly Define T Cell Subsets And Their Functions

Flow Cytometry is a remarkably powerful tool for the study of T cells. It has been successfully used for many decades to accurately visualize and enumerate a variety of T cell subsets.

With a large sensitivity range for fluorescent probes, >95% sampling efficiency, and the ability to sort populations of interest for further study, fluorescent-based cytometry remains a tool of choice for T cell analysis.

Single cell visualization of T cells in a heterogeneous sample is clearest when the defined T cell populations are determined with ‘rock-solid’ gating and data analysis strategies.

For example, detection of the total CD4 and CD8 T cell compartments (via CD3+ CD4+ and CD3+ CD8+ cells, respectively) is straightforward; also, T cell populations that are clearly defined by surface antigen expression include antigen-specific (tetramer-binding) memory T cell clones and invariant Natural Killer T (iNKT) cells, a unique T cell subset discerned via binding to a CD1d-glycolipid loaded tetramer.

Such gating strategies, when paired with CD3 inclusion, doublet exclusion, and appropriate live/dead gating, allow clear, accurate visualization of your T cell population of interest and enumeration of frequency in your sample.

The Benefits And Caveats Of Advanced T Cell Antibody Panels

Flow panel sizes have expanded dramatically in the last 15+ years and continue to do so. An antibody panel with more than 10-colors is no longer uncommon, and with the adaptation of the more recent Brilliant dyes, 14+ colors are now very feasible on many instruments. With this increase in parameter detection per sample, the subsetting of T cells in the literature has exploded.

For example, when considering one aspect of T cell biology, the naïve to memory differentiation post-antigen exposure, the field has transcended from an era of two subsets (naïve and memory) into the era of Central Memory, Transitional Memory, Effector Memory, Terminally Differentiated Effector Memory, etc.

At first glance, these larger panels bring clarity to the T cell landscape. By revealing more of the complex marker distribution on individual cells, we gain a clearer picture of the heterogeneity of this facet of the immune cell compartment as a whole.

This, in turn, could allow better understanding of how the composite immune system functions in health and disease states (know your players, know the game) and also facilitate discovery of new therapeutic targets (á la anti-PD-1).

However, forcing square pegs into the round holes present in many linear differentiation models (with stages in the process noted via marker changes) can serve to further cloud the T cell field, potentially leading to misleading claims about the actual status of a T cell in a given sample or group of patients.

Some markers can change like the wind (it seems) and we must use caution to not underestimate the complex web of factors beyond mere ‘differentiation’ that impacts a T cell, causing it to express a given marker at a moment in time.

Why T Cell Function Should Guide Your T Cell Analysis

Figure_1_

When trolling these waters, it’s best to pair our T cell subset findings with functional profiling of the population of interest.

The winds of T cell differentiation ‘states’ or who is or is not a bona-fide Treg may change, but a functional profile will serve to anchor the biological relevance and potential role of your T cell population of interest on more solid ground.

This is where flow cytometry cell sorting is advantageous, for sorting and functionally profiling T cell subsets (via a series of elispots or multiplex supernatant analysis of ex vivo cultures, for example) allows highly sensitive, multi-analyte profiling with far fewer cells than would be required for intracellular cytokine staining.

And what is a cell whose face certainly looks naïve (CD45RA+, CCR7+) yet is secreting IFN-g and TNF-a (as such cells have been found in human samples)?

When in doubt, let a cell’s actions lead its definition, and step back from pigeonholing via previously defined label. For example, defining a population as bearing a “surface phenotype resembling a central memory T cell, while secreting Th1 cytokines” is a safe and accurate way to go (see above Figure).

Overall, flow cytometry is an ideal way to visualize T cells in a heterogeneous sample. The key is to define your T cell populations of interest with correct gating strategies and to back up your T cell subset findings with functional analysis of these subsets. A cell’s actions should guide its definition, not the other way around.

To learn more about analyzing T cell subsets and subset function by flow cytometry, and to get access to all of our advanced materials including 20 training videos, presentations, workbooks, and private group membership, get on the Flow Cytometry Mastery Class wait list.

Join Expert Cytometry's Mastery Class

ABOUT TIM BUSHNELL, PHD

Tim Bushnell holds a PhD in Biology from the Rensselaer Polytechnic Institute. He is a co-founder of—and didactic mind behind—ExCyte, the world’s leading flow cytometry training company, which organization boasts a veritable library of in-the-lab resources on sequencing, microscopy, and related topics in the life sciences.

Tim Bushnell, PhD

Similar Articles

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

Common Numbers-Based Questions I Get As A Flow Cytometry Core Manager And How To Answer Them

By: Tim Bushnell, PhD

Numbers are all around us.  My personal favorite is ≅1.618 aka ɸ aka ‘the golden ratio’.  It’s found throughout history, where it has influenced architects and artists. We see it in nature, in plants, and it is used in movies to frame shots. It can be approximated by the Fibonacci sequence (another math favorite of mine). However, I have not worked out how to apply this to flow cytometry.  That doesn’t mean numbers aren’t important in flow cytometry. They are central to everything we do, and in this blog, I’m going to flit around numbers-based questions that I have received…

How To Do Variant Calling From RNASeq NGS Data

How To Do Variant Calling From RNASeq NGS Data

By: Deepak Kumar, PhD

Developing variant calling and analysis pipelines for NGS sequenced data have become a norm in clinical labs. These pipelines include a strategic integration of several tools and techniques to identify molecular and structural variants. That eventually helps in the apt variant annotation and interpretation. This blog will delve into the concepts and intricacies of developing a “variant calling” pipeline using GATK. “Variant calling” can also be performed using tools other than GATK, such as FREEBAYES and SAMTOOLS.  In this blog, I will walk you through variant calling methods on Illumina germline RNASeq data. In the steps, wherever required, I will…

Understanding Clinical Trials And Drug Development As A Research Scientist

Understanding Clinical Trials And Drug Development As A Research Scientist

By: Deepak Kumar, PhD

Clinical trials are studies designed to test the novel methods of diagnosing and treating health conditions – by observing the outcomes of human subjects under experimental conditions.  These are interventional studies that are performed under stringent clinical laboratory settings. Contrariwise, non-interventional studies are performed outside the clinical trial settings that provide researchers an opportunity to monitor the effect of drugs in real-life situations. Non-interventional trials are also termed observational studies as they include post-marketing surveillance studies (PMS) and post-authorization safety studies (PASS). Clinical trials are preferred for testing newly developed drugs since interventional studies are conducted in a highly monitored…

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

How To Profile DNA And RNA Expression Using Next Generation Sequencing (Part-2)

By: Deepak Kumar, PhD

In the first blog of this series, we explored the power of sequencing the genome at various levels. We also dealt with how the characterization of the RNA expression levels helps us to understand the changes at the genome level. These changes impact the downstream expression of the target genes. In this blog, we will explore how NGS sequencing can help us comprehend DNA modification that affect the expression pattern of the given genes (epigenetic profiling) as well as characterizing the DNA-protein interactions that allow for the identification of genes that may be regulated by a given protein.  DNA Methylation Profiling…

How To Profile DNA And RNA Expression Using Next Generation Sequencing

How To Profile DNA And RNA Expression Using Next Generation Sequencing

By: Deepak Kumar, PhD

Why is Next Generation Sequencing so powerful to explore and answer both clinical and research questions. With the ability to sequence whole genomes, identifying novel changes between individuals, to exploring what RNA sequences are being expressed, or to examine DNA modifications and protein-DNA interactions occurring that can help researchers better understand the complex regulation of transcription. This, in turn, allows them to characterize changes during different disease states, which can suggest a way to treat said disease.  Over the next two blogs, I will highlight these different methods along with illustrating how these can help clinical diagnostics as well as…

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

What Is Next Generation Sequencing (NGS) And How Is It Used In Drug Development

By: Deepak Kumar, PhD

NGS methodologies have been used to produce high-throughput sequence data. These data with appropriate computational analyses facilitate variant identification and prove to be extremely valuable in pharmaceutical industries and clinical practice for developing drug molecules inhibiting disease progression. Thus, by providing a comprehensive profile of an individual’s variome — particularly that of clinical relevance consisting of pathogenic variants — NGS helps in determining new disease genes. The information thus obtained on genetic variations and the target disease genes can be used by the Pharma companies to develop drugs impeding these variants and their disease-causing effect. However simple this may allude…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

We Tested 5 Major Flow Cytometry SPADE Programs for Speed - Here Are The Results

By: Tim Bushnell, PhD

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

5 FlowJo Hacks To Boost The Quality Of Your Flow Cytometry Analysis

By: Tim Bushnell, PhD

FlowJo is a powerful tool for performing and analyzing flow cytometry experiments, if you know how to use it to the fullest. This includes understanding embedding and using keywords, the FlowJo compensation wizard, spillover spreading matrix, FlowJo and R, and creating tables in FlowJo. Extending your use of FJ using these hacks will help organize your data, improve analysis and make your exported data easier to understand and explain to others. Take a few moments and explore all you can do with FJ beyond just gating populations.

Top Industry Career eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.