Data Analysis Archives | Expert Cytometry | Flow Cytometry Training Data Analysis Archives | Expert Cytometry | Flow Cytometry Training

Blog

Planning For Surface Staining Of Cells In Flow Cytometry

Surface-Staining-Of-Cells-In-Flow-Cytometry

One of the most common assays in flow cytometry is the surface labeling of cells with antibodies. Often termed “immunophenotyping”, it allows the researcher to identify, count, and isolate cells of interest in a mix of input cells. Every lab has their own favorite protocol to move from sample to cytometer, handed down from some hallowed, chemical-stained notebook, and followed as exactly as making a souffle. The real questions are, which of those steps are critical, and what other factors should be considered when staining cells? This article will focus on staining immune cells, but the principles apply in general, and specific issues for a specific sample type can be optimized in a similar way.

Read More

2 Key SPADE Parameters To Adjust For Best Flow Cytometry Results

Key-SPADE-Parameters-To-Adjust-For-Best-Flow-Cytometry-Results

Mass cytometry panels routinely include 30 or more markers, but traditional analysis methods like bivariate gating can’t adequately parse the resulting high-dimensional data. Spanning-tree progression analysis of density-normalized events (SPADE) is one of the most commonly used computational tools for visualizing and interpreting data sets from mass cytometry and multidimensional fluorescence flow cytometry experiments. There are two key parameters in SPADE that you can adjust in order get the best results possible: downsampling, and target number of nodes or k. Knowing how to properly set these values will enable you to enhance the quality of your analysis.

Read More

3 Advantages Of Using The ZE5 Cell Analyzer

Advantages-Of-Using-The-ZE5-Cell-Analyzer

Since the first laser was mounted to create the first flow cytometer, there has been a push for more – more lasers, more detectors, more colors. As a result, today’s researchers require a large number of lasers and detectors to ensure current panels can be run and new, expanded panels can be developed. This can be problematic because, in general, making one decision to improve a cell analyzer can limit the analyzer in other ways. It may seem like an impossible task, but the team of Bio-Rad and Propel Laboratories, collaborated to bring the ZE5™ Cell Analyzer to the market and, with thoughtful design, the Analyzer answers these challenges, resulting in a high-end, easy to use, automated flow cytometer.

Read More

The Difference Between Linear And Log Displays In Flow Cytometry

linear-and-log-scaling-in-flow-cytometry-experiments

We hope this explanation sheds some light on scaling. Knowing how to properly display your data is a critical part of scientific communication. Remember to use linear scaling for most scatter parameters, or when you need to visualize small changes, and log scaling for most fluorescence parameters, or when you need to visualize a wide range of values. As always in flow cytometry, there are certainly exceptions, but armed with this knowledge, you should be able to make educated judgements about which scale types to use in various assays and to better interpret your data.

Read More

4 Ways To Achieve Reproducible Flow Cytometry Results

reproducible-flow-cytometry-results

There are several areas that researchers can focus on to improve the reproducibility of their flow cytometry experiments. From instrument quality control, through validation of reagents, to reporting out the findings, a little effort will go a long way to ensure that flow cytometry data is robust, reproducible, and accurately reported to the greater scientific community. Initiatives by ISAC have further offered additional levels of standards to support these initiatives, which were developed even before the Reproducibility Crisis came to a head in both scientific and popular literature.

Read More
Flow Cytometry Education And Consulting - Affordable. Effective. Leading Edge.