6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

When you’re performing imaging, we always want to make sure that any phenotype we see isn’t just an artifact of unhealthy cells or if you’re doing drug discovery, you want to ensure that the treatment isn’t highly toxic to non-target cells. Therefore, it’s important to understand the health of your cells.

To begin to understand if your cells are healthy you need to ask yourself:

  • Is the cell still dividing?
  • Is the metabolism of the cell changed?
  • Are these features of apoptosis or necrosis?
  • Are the cells dead or on the verge of dying?

Western Blot and flow cytometry are just 2 of the possible methods for answering these questions, but when spatial or temporal information is important, microscopy is best for cell health.

Since cell health is such a crucial aspect to measure, here are 6 types of assays to help you determine the health of your cells using a microscope.

1. Look for morphology loss – or loss of asymmetry.

Use bright field imaging to determine whether your cells are spread out – do they look as they normally would in cell culture? This is the simplest way to see if your cells are “unhappy.”

If they do not look as they do in culture, what is different?

Have they rounded up? Is there blebbing?

Imagine the cells like the jelly blobs in a lava lamp.

Loss of membrane symmetry is the first sign that apoptosis is occurring, but blebbing is a sure sign that your cells will die shortly. To prevent this, check–and lower if necessary–the concentrations of drugs, and make sure that your carrier (i.e. your solvent – DMSO, ethanol, etc.) is less than 1:1000.

2. Measure proliferation.

This is as simple as performing a growth assay to compare the number of cells over time.

You can utilize proliferation markers such as Ki67 staining or incorporation of the nucleoside analog, such as BrdU. This will tell us if the DNA is still replicating.

Why is this important? All signs may point to your cells being alive, but they might not be healthy enough to replicate. Cells under stress do not proliferate because it takes a lot of energy to do so. If you are developing a drug that is tolerated but prevents cellular proliferation, then you are likely to have severe side effects. For example, you don’t want to develop an antiviral that inhibits white blood cell proliferation or tissue repair.

3. Measure caspase cleavage.

Caspases are one of the main mediators for apoptosis. Caspases are translated as pro-caspases and are considered “inactive zymogens.” Caspase 3 undergoes a cleavage event becoming a protease which mediates DNA condensation, DNA fragmentation, and cell blebbing.

Caspase cleavage can be monitored with western blot, microplate reader, flow cytometry, or microscopy. Pick whatever method you have access to, but for microscopy, staining for active caspase 3 and measuring intensity will give a good readout of the beginning of apoptosis.

Caspase activation is easier to visualize for beginners than membrane asymmetry, so it a great assay to determine if your cells are at just starting to become apoptotic. Some intracellular microbes will activate caspase, but if the infection is cleared the cells can still survive. For this reason, caspase cleavage is usually paired with a TUNEL assay (see below).

4. Determine the localization of Cytochrome C.

Cytochrome C is a protein that is localized to the inner mitochondrial membrane and is critical in the electron transport chain. Cytochrome C is released with the integrity of the mitochondria is compromised, so it is a good measure of cell health

This assay is very similar to measuring caspase and you can do it via Western Blot (with mitochondrial enrichment) or immunofluorescence to determine the localization of cytochrome C. Immunofluorescent assays are generally produce cleaner data since you don’t have to do the extra mitochondria enrichment/isolation.

Fluorescent Cytochrome C assays are as easy a measuring localization to the mitochondria.

If you’re interested in performing cytochrome C release in real-time, a nanosensor has been developed for live-cell imaging.

5. Measure mitochondrial membrane potential.

TMRE is a red-orange dye that accumulates in the mitochondria of healthy cells. A decrease in fluorescence would, with the use of TMRE, indicate that a cell that has lost mitochondrial membrane potential. Without membrane potential, ATP cannot be produced, and mitochondria can no longer act as cellular powerhouses.

Another useful dye is JC-1, a cationic green-red dye that exhibits a potential-dependent accumulation in the mitochondria. Mitochondrial depolarization is indicated by a decrease in the red-to-green fluorescent intensity ratio, so this is great for quantitative imaging. This ratiometric measuring compensates for any difference in cell uptake between experiments. If you’re dealing with non-adherent cells, JC-1 is also ideal for flow cytometry.

Finally, it’s important to include a control to ensure you can accurately measure any changes in membrane potential. A commonly used positive control is FCCP which is an ionophore uncoupler of oxidative phosphorylation. Treating cells with FCCP eliminates mitochondrial membrane potential which makes FCCP a very good positive control for these types of studies.

6. Perform a TUNEL assay.

Most people are familiar with the TUNEL assay, as it predicts the coming end of a cell. The TUNEL assay visualizes DNA fragmentation, and it can be performed as either a colorimetric assay, such as DAB, or a common fluorescent assay. Both DAB and fluorescent assays can be analyzed with a microscope.

Commonly, I find users will use the colorimetric assay on tissues and the fluorescent assays on cells. Why is this? Because tissues have much higher background auto-fluorescence, so using a colorimetric assay will give you fewer problems when you’re trying to see the signal through the background – you are not exciting the sample with fluorescence.

When performing microscopy experiments, you need to be aware of the health of your cells. This is how you can be confident in your results and know that you are not just seeing artifacts of unhealthy cells. Artifacts are a big problem in microscopy, and you don’t want to waste your time following an incorrect lead or having a reviewer question whether the phenomenon is real. A few microscopy assays that you can use to understand cell health are looking for morphology loss or loss of asymmetry; measure proliferation; measure caspase; determining the localization of cytochrome C; measuring mitochondrial potential; and performing the TUNEL assay.

To learn more about 6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results, and to get access to all of our advanced microscopy materials including training videos, presentations, workbooks, and private group membership, get on the Expert Microscopy wait list.

Join Expert Cytometry's Mastery Class

ABOUT HEATHER BROWN-HARDING

Heather Brown-Harding, PhD, is currently the assistant director of Wake Forest Microscopy and graduate teaching faculty.She also maintains a small research group that works on imaging of host-pathogen interactions. Heather is passionate about making science accessible to everyone.High-quality research shouldn’t be exclusive to elite institutions or made incomprehensible by unnecessary jargon. She created the modules for Excite Microscopy with this mission.

In her free time, she enjoys playing with her cat & dog, trying out new craft ciders and painting.You can find her on twitter (@microscopyEd) a few times of day discussing new imaging techniques with peers.

Heather Brown-Harding

Similar Articles

Which Fluorophores To Use For Your Microscopy Experiment

Which Fluorophores To Use For Your Microscopy Experiment

By: Heather Brown-Harding, PhD

Fluorophore selection is important. I have often been asked by my facility users which fluorophore is best suited for their experiments. The answer to this is mostly dependent on whether they are using a widefield microscope with set excitation/emission cubes or a laser based system that lets you select the laser and the emission window. Once you have narrowed down which fluorophores you can excite and collect the correct emission, you can further refine the specific fluorophore that is best for your experiment.  In this blog  we will discuss how to determine what can work with your microscope, and how…

4 No Cost Ways To Improve Your Microscopy Image Quality

4 No Cost Ways To Improve Your Microscopy Image Quality

By: Heather Brown-Harding, PhD

Image quality is critical for accurate and reproducible data. Many people get stuck on the magnification of the objective or on using a confocal instead of a widefield microscope. There are several other factors that affect the image quality such as the numerical aperture of the objective, the signal-to-noise ratio of the system, or the brightness of the sample.  Numerical aperture is the ability of an objective to collect light from a sample, but it contributes to two key formulas that will affect your image quality. The first is the theoretical resolution of the objective. It is expressed with the…

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

What Is Total Internal Reflection Fluorescence (TIRF) Microscopy & Is It Right For You?

By: Heather Brown-Harding, PhD

TIRF is not as common as other microscopy based techniques due to certain restrictions. We will discuss these restrictions, then analyze why it might be perfect for your experiment.  TIRF relies on an evanescent wave, created through a critical angle of coherent light (i.e. laser) that reaches a refractive index mismatch.  What does it mean in practice?  A high angle laser reflects off the interface of the coverslip and the sample. Although the depth that this wave penetrates is dependent on the wavelength of the light, in practice it is approximately 50-300nm from the coverslip. Therefore, the cell membrane is…

5 Drool Worthy Imaging Advances Of 2020

5 Drool Worthy Imaging Advances Of 2020

By: Heather Brown-Harding, PhD

2020 was a difficult year for many, with their own research being interrupted- either by lab shutdowns or recruitment into the race against COVID-19. Despite the challenges, scientists have continued to be creative and have pushed the boundaries of what is possible. These are the techniques and technologies that every microscopist was envious of in 2020. Spatially Resolved Transcriptomics Nature Methods declared that spatially resolved transcriptomics was the 2020 method of the year. These are a  group of methods that combine gene expression with their physical location. Single-cell RNA sequencing (scRNAseq) was originally developed for cells that had been dissociated…

Picking The Right Functional Imaging Probe

Picking The Right Functional Imaging Probe

By: Heather Brown-Harding, PhD

As biologists, we study the process of life, however, it’s intricacies cannot be captured by a snapshot in time. Generally, the easiest imaging experiments are those where the samples are stained, fixed, and imaged within a few days of procurement, but that too doesn’t capture the dynamic processes common in cells and organisms. Live cell imaging when combined with reporters serves as a powerful tool to provide solid imaging data. Cameleon —one of the first reporters— was developed in 1997 in Roger Tsien’s lab.  Cameleon is a green fluorescent protein (GFP) that undergoes a conformational change in the presence of…

7 Key Image Analysis Terms For New Microscopist

7 Key Image Analysis Terms For New Microscopist

By: Heather Brown-Harding, PhD

As scientists, we need to perform image analysis after we’ve acquired images in the microscope, otherwise, we have just a pretty picture and not data. The vocabulary for image processing and analysis can be a little intimidating to those new to the field. Therefore, in this blog, I’m going to break down 7 terms that are key when post-processing of images. 1. RGB Image Images acquired during microscopy can be grouped into two main categories. Either monochrome (that can be multichannel) or “RGB.” RGB stands for red, green, blue – the primary colors of light. The cameras in our phones…

The 5 Essentials To Successful Spectral Unmixing

The 5 Essentials To Successful Spectral Unmixing

By: Heather Brown-Harding, PhD

In an ideal world, we would be able to use fluorophores that don’t have any overlap in emission spectra and autofluorescence wouldn’t obscure your signal. Unfortunately, we don’t live in such a world and often have to use two closely related dyes – or contend with fluorescent molecules that are innately part of our sample. Fluorescent molecules include chlorophyll, collagen, NADPH, and vitamin A.  One example that I recently encountered was developing a new probe for lipids. The reviewers requested a direct comparison of the new dye to Nile Red in the same sample. Both dyes would localize to the…

The 5 Fundamental Methods For Imaging Nucleic Acids

The 5 Fundamental Methods For Imaging Nucleic Acids

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

Designing Microscopy Experiments Related To Infectious Diseases And Antivirals

By: Heather Brown-Harding, PhD

There are 4 major ways to sort cells. The first way can use magnetic beads coupled to antibodies and pass the cells through a magnetic field. The labeled cells will stick, and the unlabeled cells will remain in the supernatant. The second way is to use some sort of mechanical force like a flapper or air stream that separates the target cells from the bulk population. The third way is the recently introduced microfluidics sorter, which uses microfluidics channels to isolate the target cells. The last method, which is the most common––based on Fuwyler’s work––is the electrostatic cell sorter. This…

Top Industry Career eBooks

Get the Advanced Microscopy eBook

Get the Advanced Microscopy eBook

Heather Brown-Harding, PhD

Learn the best practices and advanced techniques across the diverse fields of microscopy, including instrumentation, experimental setup, image analysis, figure preparation, and more.

Get The Free Modern Flow Cytometry eBook

Get The Free Modern Flow Cytometry eBook

Tim Bushnell, PhD

Learn the best practices of flow cytometry experimentation, data analysis, figure preparation, antibody panel design, instrumentation and more.

Get The Free 4-10 Compensation eBook

Get The Free 4-10 Compensation eBook

Tim Bushnell, PhD

Advanced 4-10 Color Compensation, Learn strategies for designing advanced antibody compensation panels and how to use your compensation matrix to analyze your experimental data.