Grants & Publications Archives | Expert Cytometry | Flow Cytometry Training Grants & Publications Archives | Expert Cytometry | Flow Cytometry Training

Blog

3 Ways To Improve Flow Cytometry Troubleshooting

3-Ways-To-Improve-Flow-Cytometry-Troubleshooting

A lot of the troubleshooting is focused on fluidics issues. If you sit down and think about your workflow, and how you might want to add a couple of little tweaks here and there which will ultimately help you improve the quality of your data as well as aid you in identifying issues before they become problems your troubleshooting will be much smoother. Consider these three things, what do you before you start collecting data, ensure you have appropriate plots of time vs fluorescence for each of the lasers your using and apply appropriate gating procedures.

Read More

Using Begley’s Rules To Improve Reproducibility In Flow Cytometry

Using-Begleys-Rules-to-Improve-Reproducibility-in-Flow-Cytometry

Cell sorting is a combination of a numbers game (Recovery), quality of output (Purity) and speed. For any experiment, the end goal is going to be measured by these three characteristics, and as soon as one of these measures is more heavily favored, the other two must be compromised in some manner.
When designing a sorting experiment, start with the question of what will the cells be used for after sorting, and how many cells will you need for those experiments? That will set the minimum recovery that is needed. The second question is how pure do you need the cells? The requirements of the downstream assay will also dictate the purity needed.

The cell type being used will, in part, dictate the speed of sorting. Smaller cells can be sorted faster because a smaller nozzle can be used.

When you start a cell sort it’s important that you are aware of the downstream analysis and assays that you want to run. This will determine how you perform the sort and how you determine if your sort was successful or not.
Successful cell sorting involves balancing recovery, yield and speed. What do these three terms mean and what influences each of these factors?

Read More

From Purity To Biosafety, Understanding The Cell Sorting Process

From-Purity-To-Biosafety-Understanding-The-Cell-Sorting-Process

Cell sorting is a combination of a numbers game (Recovery), quality of output (Purity) and speed. For any experiment, the end goal is going to be measured by these three characteristics, and as soon as one of these measures is more heavily favored, the other two must be compromised in some manner.
When designing a sorting experiment, start with the question of what will the cells be used for after sorting, and how many cells will you need for those experiments? That will set the minimum recovery that is needed. The second question is how pure do you need the cells? The requirements of the downstream assay will also dictate the purity needed.

The cell type being used will, in part, dictate the speed of sorting. Smaller cells can be sorted faster because a smaller nozzle can be used.

When you start a cell sort it’s important that you are aware of the downstream analysis and assays that you want to run. This will determine how you perform the sort and how you determine if your sort was successful or not.
Successful cell sorting involves balancing recovery, yield and speed. What do these three terms mean and what influences each of these factors?

Read More

Best Flow Cytometry Cell Sorting Practices

Best-Flow-Cytometry-Cell-Sorting-Practices

As a researcher, you want to achieve the best cell sorting possible. So, how can you achieve that? There are clear strategies you can use to achieve great cell sorting results, including finding your ideal sample concentration, using magnetic sorting to enrich your population, suspending cells in the right buffer to avoid cell clumps, changing your instrument settings when sorting small cells, and optimizing your sample preparation and instrument when sorting large cells.

Read More

6 Areas Of Consideration For Flow Cytometry Cell Cycle Analysis

Areas-Of-Consideration-For-Flow-Cytometry-Cell-Cycle-Analysis

Cell cycle seems like such a straightforward assay. At its heart, it is a one-color assay and should be a simple protocol to follow. However, as discussed before, fixation and dye concentrations are critical. Once those are optimized, it becomes important to run the cells low and slow in order to get the best quality histograms for analysis — the topic of another blog. Adding the critical CEN and TEN controls will help standardize the assay, and ensure consistency and reproducibility between runs while helping identify non-standard (aneuploid, polyploid) populations from normal ploidy. Trying to isolate and focus on specific components of the cell cycle can be done by addition of specific antibodies or using thymidine analogs. In the end, cell cycle analysis is a simple assay that has a great deal of potential. With work and optimization, a great deal of information about the life of a cell can be extracted.

Read More
Flow Cytometry Education And Consulting - Affordable. Effective. Leading Edge.