Grants & Publications Archives | Expert Cytometry | Flow Cytometry Training Grants & Publications Archives | Expert Cytometry | Flow Cytometry Training

Blog

3 Components Of Every Flow Cytometer You Don’t Know Enough About

All flow cytometer instruments have a certain 3 components, and the way they are put together will dictate the performance of the system. As a user, you’ll be interacting heavily with these components, so you need to know both what they are and how they work. There are fluidics, optics, and electronics. The fluidics allow you to interact at the right flow rate so that your data keep a tight CV. Then you can run the same flow rate for all your samples, and you won’t have different CVs for different samples. There are also different optics you can use, like PMTs, APDs, and PDs. It’s important to remember the bandpass filters because they indicate the detector on which your signal will be measured. And with a newer generation of instruments, you can actually change out bandpass filters and design the flow cytometer to your specifications – just make sure you cite the specific bandpass filter that you use. Finally, there are electronics, which process the photon into an electronic signal that is ultimately digitized and stored in a file known as the “FCS file.” An analysis can be performed on this file at a later time.

Read More

4 Ways To Analyze Tissues By Flow Cytometry

Did you know that tissues can be measured by flow cytometry? Flow cytometry is the measurement of cellular processes at the whole-cell level. This definition is useful because it includes not only flow cytometry, but any technique that measures at the level of the whole cell. Microscopy, for instance, is a great example of cytometry. But, what can be measured by flow cytometry? For one, tissues with lots of cells. When flow cytometry is practiced, the cells are broken up. Therefore, any cellular interactions within the sample are also broken up. This includes tissues, cell-to-cell contacts in tissues, and virtually any information about the microenvironment. As we continue to discover, the microenvironment can play a dramatic role in cell development, influencing how cells grow and change. This article will discuss how to analyze tissues and microenvironments by flow cytometry.

Read More

Ask These 7 Questions Before Purchasing A Flow Cytometer

I am still convinced that my first cell sorter was possessed. The number of issues that I had with the system remains hard for me to believe, even after all these years.
It had been purchased, in part, from one vendor because the sales rep for a competitor was nowhere to be found. At that time, I admit I wasn’t overly diligent in my research process. Since then, I’ve pinpointed some critical questions that need to be answered before purchasing a new instrument.
At the end of the process, a shiny new instrument will arrive at your facility. Make sure you find time to do a shakedown and validate the system. This is the time to get to know it better, identify quirks and potential issues, and develop training and QC programs. Once your shakedown is complete, you can start adding users and encouraging feedback on the system.

Read More

6 Microscopy Assays To Determine Cell Health and Improve Your Experimental Results

When you’re performing imaging, always make sure that any phenotype isn’t just an artifact of unhealthy cells. If you’re doing drug discovery, you want to ensure that the treatment isn’t highly toxic to non-target cells. Therefore, it’s important to understand the health of the cells.

Read More

7 Things You Didn’t Know About Imaging Cytometry

It has been said that “a picture is worth a thousand words.” We are visual creatures, and we seek to capture and describe the world around us. Some of the earliest evidence for this comes from very old cave paintings found around the world, like this painting of a horse found in the caves in Lascaux, France.

With the development of reliable microscopes, such as those developed by the dutch draper Antonie van Leeuwenhoek, we were able to see what was previously invisible, probing the unseen and learning in great detail how organisms worked.

Over time, the field of cytometry (the analysis of biological processes at the whole-cell level) has expanded in many different directions. Flow cytometry can be thought of as a microscope with very poor resolution. The power of flow cytometry lies in its ability to analyze thousands of cells through many dimensions, providing an amazingly detailed understanding of the cell. However, due to the resolution, it is not possible to tell where these signals are located.

Read More
Flow Cytometry Education And Consulting - Affordable. Effective. Leading Edge.