Controls Archives | Expert Cytometry | Flow Cytometry Training Controls Archives | Expert Cytometry | Flow Cytometry Training

Blog

We Tested 5 Major Flow Cytometry SPADE Programs for Speed – Here Are The Results

In the flow cytometry community, SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a favored algorithm for dealing with highly multidimensional or otherwise complex datasets. Like tSNE, SPADE extracts information across events in your data unsupervised and presents the result in a unique visual format. Given the growing popularity of this kind of algorithm for dealing with complex datasets, we decided to test the SPADE algorithm in 5 software packages, including Cytobank, FCS Express, FlowJo, R, and the original, free software made available by the author of SPADE. Which was the fastest?

Read More

Mass Cytometry Revolves Around These 5 Things

Because mass cytometry allows users to characterize masses so effectively, data can be normalized much more efficiently than what traditional fluorescent flow will permit. If there is no working CyTof at your institution, you can still partner with CyTof-friendly research institutions that have the technology on hand. And because the samples are fixed, you can ship them overnight. This way, they will be analyzed for you. Today’s article will summarize the functionality of mass cytometry technology. This tech has been commercialized largely by Fluidigm in the CyTof systems. There are 5 key points to cover, or takeaways, that cytometrists should keep in mind as they perform their research. The 5 points include how mass cytometry works, panel design, proper sample preparation, data analysis, and imaging mass cytometry.

Read More

Use These 5 Techniques for Super Resolution

When you need better resolution than what can be achieved using a traditional microscope, it can be very intimidating to figure out which machines will work best for your experiment. Super-resolution imaging methods require software reconstruction after image acquisition. This is because multiple images are required, and they need to be combined. Additionally, the points of light need to be reassigned to their true location. Today, we’re going to discuss 5 different super resolution methods their pros and cons. Although Rayleigh Criterion is not broken, these techniques each feature creative ways to get around it.

Read More

Understanding Reproducibility in Flow Cytometry – It’s the Antibodies!

Reproducibility in flow cytometry depends on antibody quality

Reproducibility is key to the scientific method. After the results of a study are published, the community validates the findings and extends them. If the findings are not reproducible, the second step is impossible. With performable experiments increasing in complexity, and the concurrent increase in the cost of equipment and reagents to perform these experiments, it is important to find the best way to maximize the money spent on advancing research. In flow cytometry, there are many places where improvements can be made to increase the consistency and reproducibility of an experiment. The most obvious place is in the instrument, but today’s focus is on the reagents we use to identify cells of interest: Antibodies and fluorochromes.

Read More

3 Components Of Every Flow Cytometer You Don’t Know Enough About

All flow cytometer instruments have a certain 3 components, and the way they are put together will dictate the performance of the system. As a user, you’ll be interacting heavily with these components, so you need to know both what they are and how they work. There are fluidics, optics, and electronics. The fluidics allow you to interact at the right flow rate so that your data keep a tight CV. Then you can run the same flow rate for all your samples, and you won’t have different CVs for different samples. There are also different optics you can use, like PMTs, APDs, and PDs. It’s important to remember the bandpass filters because they indicate the detector on which your signal will be measured. And with a newer generation of instruments, you can actually change out bandpass filters and design the flow cytometer to your specifications – just make sure you cite the specific bandpass filter that you use. Finally, there are electronics, which process the photon into an electronic signal that is ultimately digitized and stored in a file known as the “FCS file.” An analysis can be performed on this file at a later time.

Read More
Flow Cytometry Education And Consulting - Affordable. Effective. Leading Edge.